目前广泛应用的污染水体整治工作如驳岸景观、河床硬化、综合调水及引流冲污等方法都难以解决水体生态系统重建与水体功能的再现问题。
(一)生态修复技术概念
生态修复的概念
所谓环境生态修复,是指使受损生态系统的结构和功能恢复到被破坏前的自然状况,强调在不断减少污染源的前提下,采用生态方法改善环境质量,提升环境自净能力,还原生态系统的结构,恢复生态系统在区域的结构功能。
(二)生态修复技术与方法
1、污染水体生态恢复的工程技术
(1)植物修复技术
植物修复技术是以植物(如水草、水生花卉等)忍耐和超量积累某种或某些化学物质的理论为基础,利用植物及其共生生物体系清除水体中的污染物的环境污染治理技术。
①植物萃取技术
利用金属积累植物或超积累植物将水体中的金属萃取出来,富集并运输到植物可收割部分。
②根际过滤技术
利用超积累植物或耐重金属植物从污水中吸收、沉淀和富集有毒金属。
③植物固化技术
利用耐重金属植物或超积累植物降低重金属的活性,从而减少因重金属扩散而进一步污染环境的可能性。
(2)动物与微生物修复技术
水生动物群落的恢复是水体生态系统恢复的重要内容,同时亦是维持重建水生植物群落结构和功能稳定的重要机制。
①采用CBS水体修复技术
CBS是Central Biological System(集中式生物系统)的简称,由美国CBS公司的科学家开发研制,并得到广泛成功应用,是一种高科技的生物修复水体的方法,是利用微生物生命过程中的代谢机理,将废水中的有机物分解为简单的无机物,从而去除有机污染物的过程。
②采用EM技术进行水体修复
EM为高效复合微生物菌群的简称,是一种由酵母菌、放线菌、乳酸菌、光合菌等多种有益微生物经特殊方法培育而成的高效复合微生物菌群。EM技术时日本琉球大学教授比嘉照夫先生于20世纪80年代初开发成功的一项微生物技术。EM菌群是由5科10属80多种对人类有益的微生物复合培养而成的多功能微生物菌群。其物理性状为棕褐色液体,包含有光合细菌、醋酸杆酶、放线菌、乳酸菌和酵母菌5大类微生物。EM菌群在其生长过程中能迅速分解污水中的有机物,同时依靠相互间共生增殖及协同作用,代谢出抗氧化物质,生成稳定而复杂的生态系统,抑制有害微生物的生长繁殖,激活水中具有净化水功能的原生动物、微生物及水生植物,通过这些生物的综合效应从而达到净化与修复水体的目的。
2、富营养化湖泊的生态修复技术
(1)恢复水生植被
控制营养物的生物措施包括扩大天然营养物汇点对营养物的滞留,削减营养物向营养生成带的再循环和内负荷,外源负荷的削减必须与湖泊内过程相吻合,即将营养物保持为初级生产者所不能利用的化学形态或滞留于湖内不能利用的位点。控制外源营养负荷,除利用和恢复水陆交错带的湿地和湖泊沿岸带的大型植物和微生物的作用,发展费用较低的半天然的人工湿地也是一种可行途径。对于水质明显恶化的水体沉水植被不易恢复,即使恢复也难以维持。因此优乐园必须通过根际系统的净化,控制面源污染,或是通过生物量的收获消除内负荷,美化环境。重建以沉水植物为主的水生植被对以武汉东湖为代表的长江中下游富营养化浅水湖泊的恢复至关重要。因此必须将工程措施与生态措施结合起来。在重建水生植被的早期,也必须根据湖泊水生植被自身的演替规律和水生植物的生理生态特征选择耐污性强的r-选择型植物作为先锋种类,然后逐步对水生植被的结构加以优化。
(2)优化水产养殖结构,恢复生态系统平衡
一般说来,湖泊退化的表征有藻类过度增长、水生植被衰退、污染输入超过水体自净能力及净化能力下降、水质恶化、食物链丧失等。对于这些问题,必须采取相应的人为措施促进湖泊的恢复,防止水体的进一步污染,降低富营养化水平。大型枝角类及植食性鱼类虽然可以降低藻类现存量,提高水体透明度,但在长期尺度上不能根本解决问题,必须进行湖泊生态系统的整体优化,提高和恢复生物多样性,进而提高系统的稳定性。在湖泊富营养化的过程中,水生植物群落本身也发生演替变化,以适应不同的营养水平和水环境条件。
在水体富营养水平高,透明度低,加上水华大量发生,草食性鱼类摄食等因素的作用下,沉水植物损失,湖泊进入浮游植物占优势的状态,我国称之为藻型湖泊,表现为湖水浑浊、生物多样性降低,湖泊的利用价值、美学价值和野生生物保护价值也随之下降。但并非每一个湖泊都符合这一模式顺序发展。由上述演替过程分析,对于长江流域富营养化浅水湖泊的生态恢复必须以沉水植物为主的水生植物重建为重点,将工程措施和生态调控措施结合起来。对外源与内源污染负荷的削减是有效的生态调控措施的前提。在重建水生植被的早期必须根据湖泊水生植被自身的演替规律和水生植物的生理生态特征,选择耐污性强的,选择型植物作为先锋种类,然后逐步对水生植被的结构加以优化。
3、海洋生态修复---海藻的应用
海藻是海洋生态环境的生态修复者,大力发展海藻养殖,可以减少海洋富营养化,修复已遭到破坏的海洋生态系统,保护海洋生物资源。
海藻通过从海洋环境中不断吸收氮和磷,当生长到一定大小,可以被人们很容易地从海区收获到陆地,这种收获本身就是把大量吸收和储存在海藻中的氮和磷从海洋中除去。这种除氮和磷的方式必须存在两大前提:其一是该种海藻具有较高经济价值,而且经济价值越高越容易被栽培和收获。其二该种海藻可大规模栽培生产且收割方便。海洋微藻也能从海洋中吸收氮和磷,但由于其个体小难以收获,因此难以充当现代海洋生态修复者,只能作为生态平衡成分之一。